# CBSEtips.in

## Thursday, 28 January 2021

### CBSE Class 10 Maths - MCQ Questions and Online Tests - Unit 8 - Introduction to Trigonometry

#### CBSE Class 10 Maths – MCQ and Online Tests – Unit 8 – Introduction to Trigonometry

Every year CBSE conducts board exams for 10th standard. These exams are very competitive to all the students. So our website provides online tests for all the 10th subjects. These tests are also very effective and useful for those who preparing for competitive exams like NEET, JEE, CA etc. It can boost their preparation level and confidence level by attempting these chapter wise online tests.

These online tests are based on latest CBSE Class 10 syllabus. While attempting these our students can identify the weak lessons and continuously practice those lessons for attaining high marks. It also helps to revise the NCERT textbooks thoroughly.

#### CBSE Class 10 Maths – MCQ and Online Tests – Unit 1 – Introduction to Trigonometry

Question 1.
Given that sin θ = $$\frac{a}{b}$$ then cos θ is equal to
(a) $$\frac{b}{\sqrt{b^2-a^2}}$$
(b) $$\frac{b}{a}$$
(c) $$\frac{\sqrt{b^2-a^2}}{b}$$
(d) $$\frac{a}{\sqrt{b^2-a^2}}$$

Answer: (c) $$\frac{\sqrt{b^2-a^2}}{b}$$

Question 2.
Given that sin α = $$\frac{1}{2}$$ and cos β = $$\frac{1}{2}$$, then the value of (α + β) is
(a) 0°
(b) 30°
(c) 60°
(d) 90°

Question 3.
If tan θ = 3, then $$\frac{4sin θ-cos θ }{4sin θ+cos θ}$$ is equal to
(a) $$\frac{2}{3}$$
(b) $$\frac{1}{3}$$
(c) $$\frac{1}{2}$$
(d) $$\frac{3}{4}$$

Answer: (c) $$\frac{1}{2}$$

Question 4.
sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ
(b) 0
(c) 2 sin θ
(d) 1

Question 5.
If √2 sin (60° – α) = 1 then α is
(a) 45°
(b) 15°
(c) 60°
(d) 30°

Question 6.
The value of sin² 30° – cos² 30° is
(a) –$$\frac{1}{2}$$
(b) $$\frac{√3}{2}$$
(c) $$\frac{3}{2}$$
(d) –$$\frac{2}{3}$$

Answer: (a) –$$\frac{1}{2}$$

Question 7.
The maximum value of $$\frac{1}{cosec α}$$ is
(a) 0
(b) 1
(c) $$\frac{√3}{2}$$
(d) –$$\frac{1}{√2}$$

Question 8.
If cos (40° + A) = sin 30°, then value of A is
(a) 30°
(b) 40°
(c) 60°
(d) 20°

Question 9.
If cosec θ – cot θ = $$\frac{1}{3}$$, the value of (cosec θ + cot θ) is
(a) 1
(b) 2
(c) 3
(d) 4

Question 10.
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is

(a) $$\frac{4}{3}$$
(b) $$\frac{14}{3}$$
(c) $$\frac{5}{3}$$
(d) $$\frac{13}{3}$$

Answer: (a) $$\frac{4}{3}$$

Question 11.
$$\frac{1+tan^2 A}{1+cot^2 A}$$ is equal to
(a) sec² A
(b) -1
(c) cot² A
(d) tan² A

Question 12.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to
(a) -1
(b) 0
(c) 1
(d) None of these

Question 13.
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal
(a) -1
(b) 1
(c) 0
(d) None of these

Question 14.
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to
(a) 0
(b) 6
(c) -1
(d) None of these

Question 15.
If cos (81 + θ)° = sin($$\frac{k}{3}$$ – θ)° where θ is an acute angle, then the value of k is
(a) 18°
(b) 27°
(c) 9°
(d) 81°

Question 16.
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to
(a) 0
(b) 1
(c) 2
(d) -1

Question 17.
If sin 2A = $$\frac{1}{2}$$ tan² 45° where A is an acute angle, then the value of A is
(a) 60°
(b) 45°
(c) 30°
(d) 15°

Question 18.
$$\frac{sin θ}{1 + cos θ}$$ is
(a) $$\frac{cos θ}{1 – sin θ}$$
(b) $$\frac{1 – sin θ}{sin θ}$$
(c) $$\frac{1 – sin θ}{cos θ}$$
(d) $$\frac{1 – cos θ}{sin θ}$$

Answer: (d) $$\frac{1 – cos θ}{sin θ}$$

Question 19.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to
(a) 0
(b) 1
(c) -1
(d) 2

Question 20.
If A + B = 90°, cot B = $$\frac{3}{4}$$ then tan A is equal to:
(a) $$\frac{5}{3}$$
(b) $$\frac{1}{3}$$
(c) $$\frac{3}{4}$$
(d) $$\frac{1}{4}$$

Answer: (c) $$\frac{3}{4}$$

Share: