CBSE Class 12 Maths – MCQ and Online Tests – Unit 3 – Matrices
Every year CBSE conducts board exams for 12th standard. These exams are very competitive to all the students. So our website provides online tests for all the 12th subjects. These tests are also very effective and useful for those who preparing for competitive exams like NEET, JEE, CA etc. It can boost their preparation level and confidence level by attempting these chapter wise online tests.
These online tests are based on latest CBSE Class 12 syllabus. While attempting these our students can identify the weak lessons and continuously practice those lessons for attaining high marks. It also helps to revise the NCERT textbooks thoroughly.
CBSE Class 12 Maths – MCQ and Online Tests – Unit 3 – Matrices
Question 1.
Let A = \(\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right]\) then
(a) A-1 = \(\left[\begin{array}{cc}
\frac{3}{5} & \frac{1}{5} \\
\frac{-2}{5} & \frac{1}{5}
\end{array}\right]\)
(b) |A| = 0
(c) |A| = 5
(d) A² = 1
Answer
Answer: (a) A-1 = \(\left[\begin{array}{cc}
\frac{3}{5} & \frac{1}{5} \\
\frac{-2}{5} & \frac{1}{5}
\end{array}\right]\)
Question 2.
A² – A + I = 0 then the inverse of A
(a) A
(b) A + I
(c) I – A
(d) A – I
Answer
Answer: (c) I – A
Question 3.
If A = \(\left[\begin{array}{cc}
2 & 3 \\
1 & -4
\end{array}\right]\) and B = \(\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]\) then find (AB)-1
(a) \(\frac{1}{11}\) \(\left[\begin{array}{cc}
14 & 5 \\
5 & 1
\end{array}\right]\)
(b) \(\frac{1}{11}\) \(\left[\begin{array}{cc}
14 & -5 \\
-5 & 1
\end{array}\right]\)
(c) \(\frac{1}{11}\) \(\left[\begin{array}{cc}
1 & 5 \\
5 & 14
\end{array}\right]\)
(d) \(\frac{1}{11}\) \(\left[\begin{array}{cc}
1 & -5 \\
-5 & 14
\end{array}\right]\)
Answer
Answer: (a) \(\frac{1}{11}\) \(\left[\begin{array}{cc}
14 & 5 \\
5 & 1
\end{array}\right]\)
Question 4.
If A = \(\left[\begin{array}{cc}
\cos x & -\sin x \\
\sin x & \cos x
\end{array}\right]\) then A + AT = I if the value of x is
(a) \(\frac{π}{6}\)
(b) \(\frac{π}{3}\)
(c) π
(d) 0
Answer
Answer: (b) \(\frac{π}{3}\)
Question 5.
If A = \(\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\) then A² is equal to
(a) \(\left[\begin{array}{cc}
a^{2} & b^{2} \\
c^{2} & d^{2}
\end{array}\right]\)
(b) \(\left[\begin{array}{cc}
b^{2}+bc & ab+bd \\
ac+dc & dc+d^{2}
\end{array}\right]\)
(c) \(\left[\begin{array}{cc}
a^{3} & b^{3} \\
c^{3} & d^{3}
\end{array}\right]\)
(d) None of these
Answer
Answer: (b) \(\left[\begin{array}{cc}
b^{2}+bc & ab+bd \\
ac+dc & dc+d^{2}
\end{array}\right]\)
Question 6.
If A = \(\left[\begin{array}{cc}
2x & 5 \\
8 & x
\end{array}\right]\) = \(\left[\begin{array}{cc}
6 & -2 \\
7 & 3
\end{array}\right]\) then the value of x is
(a) 3
(b) ±3
(c) ±6
(d) 6
Answer
Answer: (a) 3
Question 7.
If A = \(\left[\begin{array}{cc}
α & 0 \\
1 & 1
\end{array}\right]\) B = \(\left[\begin{array}{cc}
1 & 0 \\
5 & 1
\end{array}\right]\) where A² = B then the value of α is
(a) 1
(b) -1
(c) 4
(d) we cant calculate the value of α
Answer
Answer: (d) we cant calculate the value of α
Question 8.
If A = \(\left[\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right]\) B = \(\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\) then AB =
(a) \(\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]\)
(b) \(\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]\)
(c) \(\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\)
(d) 10
Answer
Answer: (b) \(\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]\)
Question 9.
If A = \(\left[\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right]\) then adj A =
(a) \(\left[\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right]\)
(b) \(\left[\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right]\)
(c) \(\left[\begin{array}{cc}
1 & -2 \\
-2 & -1
\end{array}\right]\)
(d) \(\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right]\)
Answer
Answer: (a) \(\left[\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right]\)
Question 10.
If \(\left|\begin{array}{ll}
x & 8 \\
3 & 3
\end{array}\right|\) = 0, the value of x is
(a) 3
(b) 8
(c) 24
(d) 0
Answer
Answer: (b) 8
Question 11.
If \(\left[\begin{array}{cc}
1-x & 2 \\
18 & 6
\end{array}\right]\) = \(\left[\begin{array}{cc}
6 & 2 \\
18 & 6
\end{array}\right]\) then x =
(a) ±6
(b) 6
(c) -5
(d) 7
Answer
Answer: (c) -5
Question 12.
A = [aij]m×n is a square matrix if
(a) m = n
(b) m < n
(c) m > n
(d) None of these
Answer
Answer: (a) m = n
Question 13.
If A and B are square matrices then (AB)’ =
(a) B’A’
(b) A’B’
(c) AB’
(d) A’B’
Answer
Answer: (a) B’A’
Question 14.
A matrix A = [aij]m×n is said to be symmetric if
(a) aij = 0
(b) aij = aji
(c) aij = aij
(d) aij = 1
Answer
Answer: (b) aij = aji
Question 15.
For any unit matrix I
(a) I² = I
(b) |I| = 0
(c) |I| = 2
(d) |I| = 5
Answer
Answer: (a) I² = I
Question 16.
\(\left|\begin{array}{lll}
3 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 7
\end{array}\right|\) = A then |A| = ?
(a) 40
(b) 50
(c) 42
(d) 15
Answer
Answer: (c) 42
Question 17.
If a matrix is both symmetric matrix and skew symmetric matrix then
(a) A is a diagonal matrix
(b) A is zero matrix
(c) A is scalar matrix
(d) None of these
Answer
Answer: (b) A is zero matrix
Question 18.
The matrix P = \(\left[\begin{array}{ccc}
0 & 0 & 4 \\
0 & 4 & 0 \\
4 & 0 & 0
\end{array}\right]\) is
(a) square matrix
(b) diagonal matrix
(c) unit matrix
(d) None of these
Answer
Answer: (a) square matrix
Question 19.
If A and B are two matrices of the order 3 × m and 3 × n, respectively, and m = n, then the order of matrix (5A – 2B) is
(a) m × 3
(b) 3 × 3
(c) m × n
(d) 3 × n
Answer
Answer: (d) 3 × n
Question 20.
If A = \(\frac{1}{π}\) \(\left[\begin{array}{cc}
\sin ^{-1}(x \pi) & \tan^{1}\left(\frac{x}{\pi}\right) \\
\sin ^{-1}\left(\frac{x}{\pi}\right) & \cot ^{-1}(\pi x)
\end{array}\right]\)
B = \(\frac{1}{π}\) \(\left[\begin{array}{cc}
\cos ^{-1}(x \pi) & \tan ^{-1}\left(\frac{x}{\pi}\right) \\
\sin ^{-1}\left(\frac{x}{\pi}\right) & -\tan ^{-1}(\pi x)
\end{array}\right]\)
then A – B equal to
(a) I
(b) O
(c) 1
(d) \(\frac{3}{2}\) I
Answer
Answer: (d) \(\frac{3}{2}\) I
Question 21.
For any two matrices A and B, we have
(a) AB = BA
(b) AB ≠ BA
(c) AB = 0
(d) None of these
Answer
Answer: (d) None of these
Question 22.
If A = [aij]2×2 where aij = i + j, then A is equal to
(a) \(\left[\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right]\)
(b) \(\left[\begin{array}{cc}
2 & 3 \\
3 & 4
\end{array}\right]\)
(c) \(\left[\begin{array}{cc}
1 & 1 \\
2 & 2
\end{array}\right]\)
(d) \(\left[\begin{array}{cc}
1 & 2 \\
1 & 2
\end{array}\right]\)
Answer
Answer: (b) \(\left[\begin{array}{cc}
2 & 3 \\
3 & 4
\end{array}\right]\)
Question 23.
If A and B are matrices of same order, then (AB’ – BA’) is a
(a) skew symmetric matrix
(b) null matrix
(c) symmetric matrix
(d) unit matrix
Answer
Answer: (a) skew symmetric matrix
Question 24.
If A is matrix of order m × n and B is a matrix such that AB’ and B’A are both defined, then order of matrix B is
(a) m × m
(b) n × n
(c) n × m
(d) m × n
Answer
Answer: (d) m × n
Question 25.
If matrix A = [aij]2×2 where aij = {\(_{0 if i = j}^{1 if i ≠ j}\) then A² is equal to
(a) I
(b) A
(c) O
(d) None of these
Answer
Answer: (a) I
Question 26.
The matrix \(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\) is a
(a) identity matrix
(b) symmetric matrix
(c) skew symmetric matrix
(d) None of these
Answer
Answer: (b) symmetric matrix
Question 27.
A square matrix A = [aij]n×n is called a diagonal matrix if aij = 0 for
(a) i = j
(b) i < j
(c) i > j
(d) i ≠ j
Answer
Answer: (d) i ≠ j
Question 28.
The matrix A = \(\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\) is a
(a) unit matrix
(b) diagonal matrix
(c) symmetric matrix
(d) skew symmetric matrix
Answer
Answer: (c) symmetric matrix
Question 29.
If P = \(\left[\begin{array}{ccc}
i & 0 & -i \\
0 & -i & i \\
-i & i & 0
\end{array}\right]\) and Q = \(\left[\begin{array}{cc}
-i & i \\
0 & 0 \\
i & -i
\end{array}\right]\) then PQ is equal to
(a) \(\left[\begin{array}{cc}
-2 & 2 \\
1 & -1 \\
1 & -1
\end{array}\right]\)
(b) \(\left[\begin{array}{cc}
2 & -2 \\
-1 & 1 \\
-1 & 1
\end{array}\right]\)
(c) \(\left[\begin{array}{cc}
2 & -2\\
-1 & 1
\end{array}\right]\)
(d) \(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\)
Answer
Answer: (b) \(\left[\begin{array}{cc}
2 & -2 \\
-1 & 1 \\
-1 & 1
\end{array}\right]\)
Question 30.
For what values of x and y are the following matrices equal
A = \(\left[\begin{array}{cc}
2x+1 & 3y\\
0 & y^{2}-5y
\end{array}\right]\) B = \(\left[\begin{array}{cc}
x+3 & y^{2}+2 \\
0 & -6
\end{array}\right]\)
(a) 2, 3
(b) 3, 4
(c) 2, 2
(d) 3, 3
Answer
Answer: (c) 2, 2
Question 31.
Find x, y, z and w respectively such that
\(\left[\begin{array}{cc}
x-y & 2x+z\\
2x-y & 2x+w
\end{array}\right]\) = \(\left[\begin{array}{cc}
5 & 3 \\
12 & 15
\end{array}\right]\)
(a) 7, 2, 1, 1
(b) 7, 5, 3, 8
(c) 1, 2, 5, 6
(d) 6, 3, 2, 1
Answer
Answer: (a) 7, 2, 1, 1
Question 32.
If \(\left[\begin{array}{cc}
x-y & 2x+z\\
2x-y & 3z+w
\end{array}\right]\) = \(\left[\begin{array}{cc}
-1 & 5 \\
0 & 13
\end{array}\right]\) then the value of w is
(a) 1
(b) 2
(c) 3
(d) 4
Answer
Answer: (d) 4
Question 33.
If A and B are 2 × 2 matrices, then which of the following is true?
(a) (A + B)² = A² + B² + 2AB
(b) (A – B)² = A² + B² – 2AB
(c) (A – B)(A + B) = A² + AB – BA – B²
(d) (A + B) (A – B) = A² – B²
Answer
Answer: (c) (A – B)(A + B) = A² + AB – BA – B²
Question 34.
If A = \(\left[\begin{array}{cc}
1 & 2\\
3 & 4
\end{array}\right]\) then A2 – 5A is equal to
(a) 2I
(b) 3I
(c) -2I
(d) null matrix
Answer
Answer: (a) 2I
Question 35.
If A = \(\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]\) then A³ – 7A² + 10A =
(a) 5I + A
(b) 5I – A
(c) 5I
(d) 6I
Answer
Answer: (b) 5I – A
Question 36.
If A is a m × n matrix such that AB and BA are both defined, then B is an
(a) m × n matrix
(b) n × m matrix
(c) n × n matrix
(d) m × m matrix
Answer
Answer: (b) n × m matrix
Question 37.
If A = \(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & -1
\end{array}\right]\) then (A – I) (A + I) = 0 for
(a) a = b = 0 only
(b) a = 0 only
(c) b = 0 only
(d) any a and b
Answer
Answer: (d) any a and b
Question 38.
If A = \(\left[\begin{array}{cc}
1 & 1\\
0 & 2
\end{array}\right]\) then A8 – 28 (A – I)
(a) I – A
(b) 2I – A
(c) I + A
(d) A – 2I
Answer
Answer: (b) 2I – A
Question 39.
The inverse of A = \(\left|\begin{array}{ll}
2 & 3 \\
5 & k
\end{array}\right|\) will not be obtained if A has the value
(a) 2
(b) \(\frac{3}{2}\)
(c) \(\frac{5}{2}\)
(d) \(\frac{15}{2}\)
Answer
Answer: (d) \(\frac{15}{2}\)
Question 40.
If \(\left[\begin{array}{cc}
a+b & 2\\
5 & ab
\end{array}\right]\) = \(\left[\begin{array}{cc}
6 & 2 \\
5 & 8
\end{array}\right]\) then find the value of a and b respectively
(a) 2, 4
(b) 4, 2
(c) Both (a) and (b)
(d) None of these
Answer
Answer: (c) Both (a) and (b)
0 Comments:
Post a Comment