CBSE Class 11 Maths – MCQ and Online Tests – Unit 13 – Limits and Derivatives
Every year CBSE schools conducts Annual Assessment exams for 6,7,8,9,11th standards. These exams are very competitive to all the students. So our website provides online tests for all the 6,7,8,9,11th standard’s subjects. These tests are also very effective and useful for those who preparing for any competitive exams like Olympiad etc. It can boost their preparation level and confidence level by attempting these chapter wise online tests.
These online tests are based on latest CBSE syllabus. While attempting these our students can identify the weak lessons and continuously practice those lessons for attaining high marks. It also helps to revise the NCERT textbooks thoroughly.
CBSE Class 11 Maths – MCQ and Online Tests – Unit 13 – Limits and Derivatives
Question 1.
Let f(x) = cos x, when x = 0 and f(x) = x + k, when x < 0 Find the value of k given that Limx?0 f(x) exists.
(a) 0
(b) 1
(c) -1
(d) None of these
Answer
Answer: (b) 1
Hint:
Given, Limx?0 f(x) exists
? Limx?0 – f(x) = Limx?0 + f(x)
? Limx?0 (x + k) = Limx?0 cos x
? k = cos 0
? k = 1
Question 2.
The value of Limx?0 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2
Answer
Answer: (c) 2
Hint:
Given, Limx?0 (1/x) × sin-1 {2x/(1 + x²)
= Limx?0 (2 × tan-1 x)/x
= 2 × 1
= 2
Question 3.
The value of the limit Limx?0 {log(1 + ax)}/x is
(a) 0
(b) 1
(c) a
(d) 1/a
Answer
Answer: (c) a
Hint:
Given, Limx?0 {log(1 + ax)}/x
= Limx?0 {ax – (ax)² /2 + (ax)³ /3 – (ax)4 /4 + …….}/x
= Limx?0 {ax – a² x² /2 + a³ x³ /3 – a4 x4 /4 + …….}/x
= Limx?0 {a – a² x /2 + a³ x² /3 – a4 x³ /4 + …….}
= a – 0
= a
Question 4.
Limx?-1 [1 + x + x² + ……….+ x10] is
(a) 0
(b) 1
(c) -1
(d) 2
Answer
Answer: (b) 1
Hint:
Given, Limx?-1 [1 + x + x² + ……….+ x10]
= 1 + (-1) + (-1)² + ……….+ (-1)10
= 1 – 1 + 1 – ……. + 1
= 1
Question 5.
The value of Limx?01 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2
Answer
Answer: (c) 2
Hint:
Given, Limx?0 (1/x) × sin-1 {2x/(1 + x²)
= Limx?0 (2× tan-1 x)/x
= 2 × 1
= 2
Question 6.
Limx?0 log(1 – x) is equals to
(a) 0
(b) 1
(c) 1/2
(d) None of these
Answer
Answer: (a) 0
Hint:
We know that
log(1 – x) = -x – x²/2 – x³/3 – ……..
Now,
Limx?0 log(1 – x) = Limx?0 {-x – x²/2 – x³/3 – ……..}
? Limx?0 log(1 – x) = Limx?0 {-x} – Limx?0 {x²/2} – Limx?0 {x³/3} – ……..
? Limx?0 log(1 – x) = 0
Question 7.
Limx?0 {(ax – bx)/ x} is equal to
(a) log a
(b) log b
(c) log (a/b)
(d) log (a×b)
Answer
Answer: (c) log (a/b)
Hint:
Given, Limx?0 {(ax – bx)/ x}
= Limx?0 {(ax – bx – 1 + 1)/ x}
= Limx?0 {(ax – 1) – (bx – 1)}/ x
= Limx?0 {(ax – 1)/x – (bx – 1)/x}
= Limx?0 (ax – 1)/x – Limx?0 (bx – 1)/x
= log a – log b
= log (a/b)
Question 8.
The value of limy?0 {(x + y) × sec (x + y) – x × sec x}/y is
(a) x × tan x × sec x
(b) x × tan x × sec x + x × sec x
(c) tan x × sec x + sec x
(d) x × tan x × sec x + sec x
Answer
Answer: (d) x × tan x × sec x + sec x
Hint:
Given, limy?0 {(x + y) × sec (x + y) – x×sec x}/y
= limy?0 {x sec (x + y) + y sec (x + y) – x×sec x}/y
= limy?0 [x{ sec (x + y) – sec x} + y sec (x + y)]/y
= limy?0 x{ sec (x + y) – sec x}/y + limy?0 {y sec (x + y)}/y
= limy?0 x{1/cos (x + y) – 1/cos x}/y + limy?0 {y sec (x + y)}/y
= limy?0 [{cos x – cos (x + y)} × x/{y×cos (x + y)×cos x}] + limy?0 {y sec (x + y)}/y
= limy?0 [{2sin (x + y/2) × sin(y/2)} × 2x/{2y×cos (x + y)×cos x}] + limy?0 {y sec (x + y)}/y
= limy?0 {sin (x + y/2) × limy?0 {sin(y/2)/(2y/2)} × limy?0 { x/{y×cos (x + y)×cos x}] + sec x
= sin x × 1 × x/cos² x + sec x
= x × tan x × sec x + sec x
So, limy?0 {(x + y) × sec (x + y) – x×sec x}/y = x × tan x × sec x + sec x
Question 9.
Limy?8 {(x + 6)/(x + 1)}(x+4) equals
(a) e
(b) e³
(c) e5
(d) e6
Answer
Answer: (c) e5
Hint:
Given, Limy?8 {(x + 6)/(x + 1)}(x + 4)
= Limy?8 {1 + 5/(x + 1)}(x + 4)
= eLimy?8 5(x + 4)/(x + 1)
= eLimy?8 5(1 + 4/x)/(1 + 1/x)
= e5(1 + 4/8)/(1 + 1/8)
= e5/(1 + 0)
= e5
Question 10.
The derivative of [1+(1/x)] /[1-(1/x)] is
(a) 1/(x-1)²
(b) -1/(x-1)²
(c) 2/(x-1)²
(d) -2/(x-1)²
Answer
Answer: (d) A
Hint:
Let y = [1+(1/x)] /[1-(1/x)]
then dy/dx = [{1-(1/x)}*(-1/x²)]/[{1+(1/x)}*(1/x²)]
= (1/x²) [(1/x) -1 – 1 – (1/x)]/[1-(1/x)]²
= [-2/x²]/[(x-1)/x]²
= -2/(x-1)²
Question 11.
The value of the limit Limx?0 (cos x)cot2 x is
(a) 1
(b) e
(c) e1/2
(d) e-1/2
Answer
Answer: (d) e-1/2
Hint:
Given, Limx?0 (cos x)cot² x
= Limx?0 (1 + cos x – 1)cot² x
= eLimx?0 (cos x – 1) × cot² x
= eLimx?0 (cos x – 1)/tan² x
= e-1/2
Question 12.
The value of limit Limx?0 {sin (a + x) – sin (a – x)}/x is
(a) 0
(b) 1
(c) 2 cos a
(d) 2 sin a
Answer
Answer: (c) 2 cos a
Hint:
Given, Limx?0 {sin (a + x) – sin (a – x)}/x
= Limx?0 {2 × cos a × sin x}/x
= 2 × cos a × Limx?0 sin x/x
= 2 cos a
Question 13.
The value of Limn?8 {1² + 2² + 3² + …… + n²}/n³ is
(a) 0
(b) 1
(c) -1
(d) n
Answer
Answer: (a) 0
Hint:
Given, Limn?8 {1² + 2² + 3² + …… + n²}/n³
= Limn?8 [{n×(n + 1)×(2n + 1)}/6]/{n(n + 1)/2}²
= Limn?8 [{n×n×n ×(1 + 1/n)×(2 + 1/n)}/6]/{n × n ×(1 + 1/n)/2}²
= Limn?8 [{n³ ×(1 + 1/n)×(2 + 1/n)}/6]/{n² ×(1 + 1/n)/2}²
= Limn?8 [{(1 + 1/n)×(2 + 1/n)}/6]/[n4 × {(1 + 1/n)/2}²]
? Limn?8 [{(1 + 1/n)×(2 + 1/n)}/6]/[n × {(1 + 1/n)/2}²]
= [{(1 + 1/8)×(2 + 1/8)}/6]/[8×{(1 + 1/8)/2}²
= [{(1 + 0)×(2 + 0)}/6]/8 {since 1/8 = 0}
= {(1 × 2)/6}/8
= (2/6)/8
= (1/3)/8
= 0
So, Limn?8 {1² + 2² + 3² + …… + n²}/n³ = 0
Question 14.
The value of Limn?8 (sin x/x) is
(a) 0
(b) 1
(c) -1
(d) None of these
Answer
Answer: (a) 0
Hint:
Limn?8 (sin x/x) = Limy?0 {y × sin (1/y)} = 0
Question 15.
The value of Limx?0 ax is
(a) 0
(b) 1
(c) 1/2
(d) 3/2
Answer
Answer: (b) 1
Hint:
We know that
ax = 1 + x/1! × (log a) + x²/2! × (log a)² + x³/3! × (log a)³ + ………..
Now,
Limx?0 ax = Limx?0 {1 + x/1! × (log a) + x²/2! × (log a)² + x³/3! × (log a)³ + …}
? Limx?0 ax = Limx?0 1 + Limx?0 {x/1! × (log a)} + Limx?0 {x² /2! × (log a)²}+ ………
? Limx?0 ax = 1
Question 16.
If f(x) = (x + 1)/x then df(x)/dx is
(a) 1/x
(b) -1/x
(c) -1/x²
(d) 1/x²
Answer
Answer: (c) -1/x²
Hint:
Given, f(x) = (x + 1)/x
Now, df(x)/dx = d{(x + 1)/x}/dx
= {1 × x – (x + 1)×1}/x²
= (x – x – 1)/x²
= -1/x²
Question 17.
Limx?0 (ex² – cos x)/x² is equals to
(a) 0
(b) 1
(c) 2/3
(d) 3/2
Answer
Answer: (d) 3/2
Hint:
Given, Limx?0 (ex² – cos x)/x²
= Limx?0 (ex² – cos x -1 + 1)/x²
= Limx?0 {(ex² – 1)/x² + (1 – cos x)}/x²
= Limx?0 {(ex² – 1)/x² + Limx?0 (1 – cos x)}/x²
= 1 + 1/2
= (2 + 1)/2
= 3/2
Question 18.
Limx?0 sin (ax)/bx is
(a) 0
(b) 1
(c) a/b
(d) b/a
Answer
Answer: (c) a/b
Hint:
Given, Limx?0 sin (ax)/bx
= Limx?0 [{sin (ax)/ax} × (ax/bx)]
? (a/b) Limx?0 sin (ax)/ax
= a/b
Question 19.
The expansion of log(1 – x) is
(a) x – x²/2 + x³/3 – ……..
(b) x + x²/2 + x³/3 + ……..
(c) -x + x²/2 – x³/3 + ……..
(d) -x – x²/2 – x³/3 – ……..
Answer
Answer: (d) -x – x²/2 – x³/3 – ……..
Hint:
log(1 – x) = -x – x²/2 – x³/3 – ……..
Question 20.
If f(x) = x × sin(1/x), x ? 0, then Limx?0 f(x) is
(a) 1
(b) 0
(c) -1
(d) does not exist
Answer
Answer: (b) 0
Hint:
Given, f(x) = x × sin(1/x)
Now, Limx?0 f(x) = Limx?0 x × sin(1/x)
? Limx?0 f(x) = 0
0 comments:
Post a Comment